Rapid Refresh change and subsequent HRRR impact

Assimilation of PBL-based Pseudo-Observations Starting 00z 7/7/2011

ESRL/GSD/AMB

Stan Benjamin, Steve Weygandt, Curtis Alexander, John Brown, Ming Hu

Proposal: Restore PBL pseudo-obs into HRRR to improve performance

Background:

- HRRR behavior similar overall in 2011 to that in 2010
- But.... reports (primarily from NWS) on HRRR in 2011 indicated a moist bias, with possibly more false alarm and poorly placed storm forecasts.
- Extra surface observations (PBL-based pseudo-obs)
 were used in RUC last year (and since 2005) and also
 used in HRRR until 14 April 2011 when HRRR initial
 conditions were switched to RR.
- RR/GSI code for RR-based pseudo-obs was not ready on 4/14 but was developed in early June

Proposal: Restore PBL pseudo-obs into HRRR to improve performance

Solution

- PBL-based observations were added to Rapid Refresh to improve initialization of the HRRR (primary)
- Parallel testing from 6/13 through 7/5 show clear improvement in thunderstorm forecasting for initial times from 18z through 00z from HRRR-dev (parallel HRRR with PBL-based pseudo-obs added to parallel development Rapid Refresh – RR-dev)
- Change made at 00z 7 July 2011 to RR-primary (which initialized the primary HRRR)

Use of surface obs information throughout boundary layer

Problem

- Information from surface observation not used through depth of PBL by analysis
 - Surface observation not retained in model forecast

Solution

- Use METAR observation throughout PBL depth (from background field) by creating pseudo-innovations in PBL
 - Better model retention of surface observations

O-B 3h fcst – surface observations – 20-27 June 2011 – 00z- 2m dewp

	East US MAE	East Bias (F-O)	West US MAE	West Bias (F-O)
RR-primary	1.87	0.84	2.94	-1.40
RR-dev (w/ PBL pseudo- obs)	1.70	1.00	2.45	-0.49

RR-Prim Mean 2-m DewPt Temp Bias (C) 20110620-20110627 0

RR-Dev Mean 2-m DewPt Temp Bias (C) 20110620-20110627 00Z FHR:03

Boundary-layer (PBL) based "pseudo-observations"

- Built from METAR obs through PBL depth (calculated from 1h fcst)
- -Assimilated in RUC since 2005 (initializing HRRR until 4/14/2011)
 - Added to RR-dev and HRRR-dev 13 June 2011
 - Added to RR-primary (and HRRR primary) 00z 7 July 2011

RUC operational analysis 18z 3 Apr 02 IAD (Dulles Intl. Airport) Effect of PBL-based METAR

assimilation → better retention of surface observations in model

References

- Benjamin, S.G., S. Weygandt, D. Devenyi, J.M. Brown, G. Manikin, T.L. Smith, and T. Smirnova, 2004: Improved moisture and PBL initialization in the RUC using METAR data.
 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 17.3. PDF
- Benjamin, S.G., B.D. Jamison, W.R. Moninger, S. R. Sahm, B. Schwartz, T.W. Schlatter, 2010: Relative Short-Range Forecast Impact from Aircraft, Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the RUC Hourly Assimilation Cycle. Mon. Wea. Rev., 138, 1319-1343. PDF
 - see sections 2 and 4.c

RR (solid), RR-dev (dashed)

Proposed Solution / Change

- Additional observations in RR running at ESRL (which also initialized the HRRR-primary)
 - Boundary-layer based "pseudo-observations"
 - Built from METAR obs through PBL depth (calculated from 1h fcst)
 - Used in RUC since 2005 (feeding HRRR until 4/14/2011
 → WRF-RR used)

RR & HRRR Configuration

BIAS, All Issuance Times

Northeast Performance, 15UTC Issuance

Northeast Performance, 18UTC Issuance

Northeast Performance, 21UTC Issuance

Northeast Performance, 00UTC Issuance

Three Forecast Case Examples

Case study – 6/28 – 4h forecasts initialized 18z, valid 22z

Improved forecast in southeastern and middle Atlantic states from HRRR-dev

18 UTC 19 June 2011 init: 6 hr forecast valid 00 UTC 20 June 2011

Observed Reflectivity

18 UTC 20 June 2011 init: 6 hr forecast valid 00 UTC 21 June 2011

Observed Reflectivity

General improvement of convective forecasts with fewer false alarms and more accurate evolution

Summary

- PBL-based observations were added to Rapid Refresh to improve initialization of the HRRR (primary)
- Parallel testing from 6/13 through 7/5 show clear improvement in thunderstorm forecasting for initial times from 18z through 00z from HRRR-dev (parallel HRRR with PBL-based pseudo-obs added to parallel development Rapid Refresh – RR-dev)
- Change made at 00z 7 July 2011 to RR-primary (which initializes the primary HRRR)